题目内容

曲线y=x2-x+1在点(1,0)处的切线方程为(  )
A、y=x-1
B、y=-x+1
C、y=2x-2
D、y=-2x+2
考点:利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:求出原函数的导函数,得到函数在x=1处的导数,然后代入直线方程的点斜式得答案.
解答: 解:∵y=x2-x+1,
∴y′=2x-1,
y′|x=1=1,
∴曲线y=x2-x+1在点(1,0)处的切线方程为y-0=1×(x-1),
即y=x-1.
故选:A.
点评:本题考查了利用导数研究过曲线上某点处的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网