题目内容

在Rt△ABC中,若∠C=90°,AC=b,BC=a,则△ABC的外接圆半径r=
a2+b2
2
,将此结论类比到空间有
 
考点:类比推理
专题:计算题,推理和证明
分析:这是一个类比推理的题,在由平面图形到空间图形的类比推理中,一般是由点的性质类比推理到线的性质,由线的性质类比推理到面的性质,由已知在平面几何中在△ABC中,若∠C=90°,AC=b,BC=a,则△ABC的外接圆的半径r=
a2+b2
2
,我们可以类比这一性质,推理出在空间中有三条侧棱两两垂直的四面体A-BCD中类似的结论.
解答: 解:由平面图形的性质类比推理空间图形的性质时
一般是由点的性质类比推理到线的性质,
由线的性质类比推理到面的性质,
由圆的性质推理到球的性质.
由已知在平面几何中,△ABC中,若∠C=90°,AC=b,BC=a,则△ABC的外接圆的半径r=
a2+b2
2

我们可以类比这一性质,推理出:
取空间中有三条侧棱两两垂直的四面体A-BCD,且AB=a,AC=b,AD=c,则此三棱锥的外接球的半径是R=
a2+b2+c2
2

故答案为:在三棱锥A-BCD中,若AB、AC、AD两两互相垂直,且AB=a,AC=b,AD=c,则此三棱锥的外接球半径R=
a2+b2+c2
2
点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网