题目内容

已知定义在R上的函数f(x)对任意x,y∈R均有:f(x+y)+f(x-y)=2f(x)f(y)且f(x)不恒为零.则下列结论正确的是
 

①f(0)=0
②f(0)=1
③f(0)=0或f(0)=1
④函数f(x)为偶函数
⑤若存在实数a≠0使f(a)=0,则f(x)为周期函数且2a为其一个周期.
考点:函数的周期性,抽象函数及其应用
专题:计算题,函数的性质及应用
分析:由f(x+y)+f(x-y)=2f(x)f(y)且f(x)不恒为零,可解出f(0)=1,故可判断①②③④;代入f(a)=0求函数的周期即可.
解答: 解:由f(x)不恒为零,若f(0)=0,则f(x)+f(x)=0,故①错误;
令x=y=0,则f(0)+f(0)=2f(0)•f(0),
解得,f(0)=1,②正确;
由以上知,③错误;
令x=0,则f(y)+f(-y)=2f(y),
即f(-y)=f(y),又∵定义域为R;
故④正确;
由题意,f(x+a)+f(x-a)=0,
则f(x+a)=-f(x-a)=f(x-3a),
故4a是其一个周期;
故⑤不正确;
故答案为:②④.
点评:本题考查了抽象函数的函数值及周期性判断,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网