题目内容

若函数f(x)=ax3+bx2+cx+d(a,b,c>0)在R上是单调函数,则
f′(1)
b
的取值范围为(  )
A、(4,+∞)
B、(2+2
3
,+∞)
C、[4,+∞)
D、[2+2
3
,+∞)
考点:利用导数研究函数的单调性
专题:导数的概念及应用
分析:利用导数求解,由函数f(x)=ax3+bx2+cx+d(a,b,c>0)在R上是单调函数,可得f′(x)>0恒成立,
找出a,b,c的关系,再利用基本不等式求最值.
解答: 解:∵函数f(x)=ax3+bx2+cx+d(a,b,c>0)在R上是单调函数,
∴f′(x)>0在R上恒成立,即3ax2+2bx+c>0恒成立,即△=4b2-12ac≤0 即b2≤3ac,
f′(1)
b
=
3a+2b+c
b
=
3a
b
+
c
b
+2≥2
3ac
b2
+2≥4.
故选C.
点评:考查利用导数即基本不等式的解决问题的能力,把问题转化为恒成立问题解决是本题的关键,应好好体会这种问题的转化思路.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网