题目内容
已知f(x)=(x-1)(x-2)(x-3)(x-4)(x-5),则f′(1)= .
考点:导数的运算
专题:导数的综合应用
分析:根据导数的运算法则即可得到结论.
解答:
解:∵f(x)=(x-1)(x-2)(x-3)(x-4)(x-5),
∴令g(x)=(x-2)(x-3)(x-4)(x-5),
则f(x)=(x-1)g(x)
∴f′(x)=(x-1)′g(x)+(x-1)g′(x)=g(x)+(x-1)g′(x),
则f′(1)=g(1)+(1-1)g′(1)=g(1),
∵g(1)=(1-2)(1-3)(1-4)(1-5)=24,
∴f′(1)=g(1)=24,
故答案为:24.
∴令g(x)=(x-2)(x-3)(x-4)(x-5),
则f(x)=(x-1)g(x)
∴f′(x)=(x-1)′g(x)+(x-1)g′(x)=g(x)+(x-1)g′(x),
则f′(1)=g(1)+(1-1)g′(1)=g(1),
∵g(1)=(1-2)(1-3)(1-4)(1-5)=24,
∴f′(1)=g(1)=24,
故答案为:24.
点评:本题主要考查导数的计算,利用导数的运算法则是解决本题的关键.
练习册系列答案
相关题目
四边形ABCD是平行四边形,
=(2,4),
=(1,3),则
=( )
| AB |
| AC |
| AD |
| A、(-1,-1) |
| B、(1,1) |
| C、(2,4) |
| D、(3,7) |
若函数f(x)=ax3+bx2+cx+d(a,b,c>0)在R上是单调函数,则
的取值范围为( )
| f′(1) |
| b |
| A、(4,+∞) | ||
B、(2+2
| ||
| C、[4,+∞) | ||
D、[2+2
|