题目内容

在△ABC中,角A,B,C的对边分别是a,b,c,且A,B,C成等差数列,a+c=2,则b的取值范围是(  )
A、[1,2)
B、(0,2]
C、[1,
3
]
D、[1,+∞)
考点:等差数列的性质,三角函数的最值
专题:等差数列与等比数列
分析:由题意可得B=
π
3
,由余弦定理可得b2=4-3ac,由基本不等式可得0<ac≤1,然后由不等式的性质可得范围.
解答: 解:由题意可得A+B+C=π,2B=A+C,解得B=
π
3

∴由余弦定理可得b2=a2+c2-2accosB
=a2+c2-ac=(a+c)2-3ac=4-3ac,
由基本不等式可得2=a+c≥2
ac
,0<ac≤1,
∴-3≤-3ac<0,∴1≤4-3ac<4,即1≤b2<4
∴b的取值范围为[1,2)
故选:A
点评:本题考查等差数列的性质和基本不等式,涉及余弦定理,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网