题目内容

已知x2+2x+y2=0,则
y
x+3
的最大值是
 
考点:点到直线的距离公式
专题:直线与圆
分析:由题意可得
y
x+3
表示圆上的点与(-3,0)连线的斜率,由直线与圆相切待定系数求k可得.
解答: 解:x2+2x+y2=0变形可得(x+1)2+y2=1,
∴点(x,y)在以(-1,0)为圆心1为半径的圆上,
y
x+3
表示圆上的点与(-3,0)连线的斜率,
设过点(-3,0)与圆相切的直线为y=k(x+3),
化为一般式可得kx-y+3k=0,
由点到直线的距离公式可得
|-k+3k|
k2+1
=1,
解得k=±
3
3

y
x+3
的最大值为
3
3

故答案为:
3
3
点评:本题考查直线与圆的位置关系,利用式子的几何意义是解决问题的关键,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网