题目内容

在△ABC中,角A,B,C所对的边分别为a,b,c,已知
cosA
cosB
=
b
a
,且C=
3

(Ⅰ)求角A,B的大小;
(Ⅱ)设函数f(x)=sin(2x+A)-sin2x+cos2x,求函数f(x)的最小正周期及最小值.
考点:正弦定理的应用,三角函数的最值
专题:三角函数的求值,三角函数的图像与性质,解三角形
分析:(Ⅰ)由已知及正弦定理可得sin2A=sin2B,有A=B,由已知角C=
3
,即可求出A,B的大小;
(Ⅱ)化简函数解析式可得f(x)=
3
sin(2x+
π
3
),即可求函数f(x)的最小正周期及最小值.
解答: 解:(Ⅰ)∵
cosA
cosB
=
b
a
,由正弦定理得
cosA
cosB
=
sinB
sinA

即sin2A=sin2B,
∴A=B或A+B=
π
2
(舍去),
又∵C=
3

∴A=B=
π
6

(Ⅱ)f(x)=sin(2x+A)-sin2x+cos2x=sin(2x+
π
6
)+cos2x
=sin2xcos
π
6
+cos2xsin
π
6
+cos2x
=
3
2
sin2x+
3
2
cos2x=
3
sin(2x+
π
3
),
∴最小正周期T=
|ω|
=π,最小值为-
3
点评:本题主要考查了正弦定理的应用,三角函数的图象与性质,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网