题目内容

化简:
(1)(1+tan2α)cos2α;
(2)
1+sinα
1-sinα
-
1-sinα
1+sinα
,其中α为第二象限角.
考点:三角函数的化简求值
专题:计算题,三角函数的求值
分析:(1)化简通分可得(1+tan2α)cos2α=
cos2α+sin2α
cos2α
×cos2α
=1;
(2)由于α为第二象限角.可得sinα>0,cosα<0,从而
1+sinα
1-sinα
-
1-sinα
1+sinα
=
(1+sinα)2
cos2α
-
(1-sinα)2
cos2α
=
1+sinα-(1-sinα)
|cosα|
=-2tanα.
解答: 解:(1)(1+tan2α)cos2α=
cos2α+sin2α
cos2α
×cos2α
=1;
(2)∵α为第二象限角.
∴sinα>0,cosα<0
1+sinα
1-sinα
-
1-sinα
1+sinα

=
(1+sinα)2
cos2α
-
(1-sinα)2
cos2α

=
1+sinα-(1-sinα)
|cosα|

=-
2sinα
cosα

=-2tanα.
点评:本题主要考察了三角函数的化简求值,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网