ÌâÄ¿ÄÚÈÝ
ÒÑÖªµÈ²îÊýÁÐ{an}ÖУ¬a1=-2£¬¹«²îd=3£»ÊýÁÐ{bn}ÖУ¬SnΪÆäǰnÏîºÍ£¬Âú×㣺2nSn+1=2n£¨n¡ÊN+£©
£¨¢ñ£©¼ÇAn=
£¬ÇóÊýÁÐAnµÄǰnÏîºÍS£»
£¨¢ò£©ÇóÖ¤£ºÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
£¨¢ó£©ÉèÊýÁÐ{cn}Âú×ãcn=anbn£¬TnΪÊýÁÐ{cn}µÄǰnÏî»ý£¬ÈôÊýÁÐ{xn}Âú×ãx1=c2-c1£¬ÇÒxn=
(n¡ÊN+£¬n¡Ý2)£¬ÇóÊýÁÐ{xn}µÄ×î´óÖµ£®
£¨¢ñ£©¼ÇAn=
| 1 |
| anan+1 |
£¨¢ò£©ÇóÖ¤£ºÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
£¨¢ó£©ÉèÊýÁÐ{cn}Âú×ãcn=anbn£¬TnΪÊýÁÐ{cn}µÄǰnÏî»ý£¬ÈôÊýÁÐ{xn}Âú×ãx1=c2-c1£¬ÇÒxn=
Tn+1Tn-1-
| ||
| TnTn-1 |
¿¼µã£ºÊýÁеÄÇóºÍ,ÊýÁеĺ¯ÊýÌØÐÔ,µÈ±È¹ØÏµµÄÈ·¶¨
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨I£©ÀûÓõȲîÊýÁеÄͨÏʽ¿ÉµÃan=3n-5£®ÀûÓÃÁÑÏî¿ÉµÃAn=
(
-
)£¬ÀûÓá°ÁÑÏîÇóºÍ¡±¿ÉµÃÊýÁÐAnµÄǰnÏîºÍS£®
£¨II£©ÓÉ2nSn+1=2n£¨n¡ÊN+£©£¬¿ÉµÃSn=1-
£®µ±n=1ʱ£¬b1=S1=
£»µ±n¡Ý2ʱ£¬bn=Sn-Sn-1£®ÀûÓõȱÈÊýÁеÄͨÏʽ¼´¿ÉÖ¤Ã÷£®
£¨III£©ÊýÁÐ{cn}Âú×ãcn=anbn=
£®ÊýÁÐ{xn}Âú×ãx1=c2-c1=
£®µ±n¡Ý2ʱ£¬xn=
-
=cn+1-cn=
£®µ±n¡Ü3ʱ£¬ÊýÁÐ{xn}µ¥µ÷µÝ¼õ£»µ±n¡Ý4ʱ£¬ÊýÁÐ{xn}µ¥µ÷µÝÔö£¬µ«ÊÇxn£¼0£¬¼´¿ÉµÃ³ö£®
| 1 |
| 3 |
| 1 |
| 3n-5 |
| 1 |
| 3n-2 |
£¨II£©ÓÉ2nSn+1=2n£¨n¡ÊN+£©£¬¿ÉµÃSn=1-
| 1 |
| 2n |
| 1 |
| 2 |
£¨III£©ÊýÁÐ{cn}Âú×ãcn=anbn=
| 3n-5 |
| 2n |
| 5 |
| 4 |
| Tn+1 |
| Tn |
| Tn |
| Tn-1 |
| 8-3n |
| 2n+1 |
½â´ð£º
£¨I£©½â£º¡ßµÈ²îÊýÁÐ{an}ÖУ¬a1=-2£¬¹«²îd=3£¬
¡àan=-2+3£¨n-1£©=3n-5£®
¡àAn=
=
=
(
-
)£¬
¡àÊýÁÐAnµÄǰnÏîºÍS=
[(-
-1)+(1-
)+(
-
)+¡+(
-
)]
=
(-
-
)
=-
£®
£¨II£©Ö¤Ã÷£ºÓÉ2nSn+1=2n£¨n¡ÊN+£©£¬¿ÉµÃSn=1-
£®
µ±n=1ʱ£¬a1=S1=
£»
µ±n¡Ý2ʱ£¬bn=Sn-Sn-1=(1-
)-(1-
)=
£®
µ±n=1ʱҲ³ÉÁ¢£®
¡àbn=
=
¡Á(
)n-1£®
¡àÊýÁÐ{bn}ÊǵȱÈÊýÁУ¬Ê×ÏîΪ
£¬¹«±ÈΪ
£®
£¨III£©ÊýÁÐ{cn}Âú×ãcn=anbn=
£®
ÊýÁÐ{xn}Âú×ãx1=c2-c1=
-
=
£®
µ±n¡Ý2ʱ£¬xn=
=
-
=cn+1-cn=
-
=
£®
µ±n=1ʱҲ³ÉÁ¢£®
µ±n¡Ü3ʱ£¬ÊýÁÐ{xn}µ¥µ÷µÝ¼õ£»µ±n¡Ý4ʱ£¬ÊýÁÐ{xn}µ¥µ÷µÝÔö£¬µ«ÊÇxn£¼0£®
¡àÊýÁÐ{xn}µÄ×î´óÖµÊÇx1=
£®
¡àan=-2+3£¨n-1£©=3n-5£®
¡àAn=
| 1 |
| anan+1 |
| 1 |
| (3n-5)(3n-2) |
| 1 |
| 3 |
| 1 |
| 3n-5 |
| 1 |
| 3n-2 |
¡àÊýÁÐAnµÄǰnÏîºÍS=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 3n-5 |
| 1 |
| 3n-2 |
=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3n-2 |
=-
| n |
| 6n-4 |
£¨II£©Ö¤Ã÷£ºÓÉ2nSn+1=2n£¨n¡ÊN+£©£¬¿ÉµÃSn=1-
| 1 |
| 2n |
µ±n=1ʱ£¬a1=S1=
| 1 |
| 2 |
µ±n¡Ý2ʱ£¬bn=Sn-Sn-1=(1-
| 1 |
| 2n |
| 1 |
| 2n-1 |
| 1 |
| 2n |
µ±n=1ʱҲ³ÉÁ¢£®
¡àbn=
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 2 |
¡àÊýÁÐ{bn}ÊǵȱÈÊýÁУ¬Ê×ÏîΪ
| 1 |
| 2 |
| 1 |
| 2 |
£¨III£©ÊýÁÐ{cn}Âú×ãcn=anbn=
| 3n-5 |
| 2n |
ÊýÁÐ{xn}Âú×ãx1=c2-c1=
| 1 |
| 22 |
| -2 |
| 2 |
| 5 |
| 4 |
µ±n¡Ý2ʱ£¬xn=
Tn+1Tn-1-
| ||
| TnTn-1 |
| Tn+1 |
| Tn |
| Tn |
| Tn-1 |
| 3n-2 |
| 2n+1 |
| 3n-5 |
| 2n |
| 8-3n |
| 2n+1 |
µ±n=1ʱҲ³ÉÁ¢£®
µ±n¡Ü3ʱ£¬ÊýÁÐ{xn}µ¥µ÷µÝ¼õ£»µ±n¡Ý4ʱ£¬ÊýÁÐ{xn}µ¥µ÷µÝÔö£¬µ«ÊÇxn£¼0£®
¡àÊýÁÐ{xn}µÄ×î´óÖµÊÇx1=
| 5 |
| 4 |
µãÆÀ£º±¾Ì⿼²éÁ˵ÝÍÆÊ½µÄÒâÒå¡¢µÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽ¡¢¡°ÁÑÏîÇóºÍ¡±¡¢ÊýÁеĵ¥µ÷ÐÔ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Èôx£¬y¡ÊR+£¬x+y=1£¬Ôòx•yÓУ¨¡¡¡¡£©
A¡¢×îСֵ
| ||
B¡¢×î´óÖµ
| ||
C¡¢×îСֵ
| ||
D¡¢×î´óÖµ
|