题目内容
对某班级50名学生学习数学与学习物理的成绩进行调查,得到如表所示:
由K2=
,解得K2=
≈11.5
参照附表,得到的正确结论是( )
| 数学成绩较好 | 数学成绩一般 | 合计 | |
| 物理成绩较好 | 18 | 7 | 25 |
| 物理成绩一般 | 6 | 19 | 25 |
| 合计 | 24 | 26 | 50 |
| n(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d) |
| 50×(18×19-6×7)2 |
| 25×25×24×26 |
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
| A、在犯错误的概率不超过0.1%的前提下,认为“数学成绩与物理成绩有关” |
| B、在犯错误的概率不超过0.1%的前提下,认为“数学成绩与物理成绩无关” |
| C、有100%的把握认为“数学成绩与物理成绩有关” |
| D、有99%以上的把握认为“数学成绩与物理成绩无关” |
考点:独立性检验的应用
专题:计算题,概率与统计
分析:根据条件中所给的观测值,同题目中节选的观测值表进行检验,得到观测值对应的结果,即可得到结论.
解答:
解:由K2≈11.5>10.828,说明有99.9%以上的把握认为“数学成绩与物理成绩有关”,
所以在犯错误的概率不超过0.1%的前提下,认为“数学成绩与物理成绩有关”.
故选:A.
所以在犯错误的概率不超过0.1%的前提下,认为“数学成绩与物理成绩有关”.
故选:A.
点评:本题考查独立性检验的应用,考查对于观测值表的认识,这种题目一般运算量比较大,主要要考查运算能力,本题有所创新,只要我们看出观测值对应的意义就可以,是一个基础题.
练习册系列答案
相关题目
已知直线l的方程y=k(x-1)+1,圆C的方程为x2-2x+y2-1=0,则直线l与C的位置关系是( )
| A、相切 | B、相交 |
| C、相离 | D、不能确定 |
M,N在圆C:x2+y2+2x-4y=0上,且点M,N关于直线3x+y+a=0对称,则a=( )
| A、-1 | B、-3 | C、3 | D、1 |
A、
| ||
B、
| ||
C、
| ||
D、
|