题目内容
若
+
+
+…+
=
,求n.
| C | 0 n |
| ||
| 2 |
| ||
| 3 |
| ||
| n+1 |
| 31 |
| n+1 |
考点:组合及组合数公式
专题:计算题,排列组合
分析:由题意,
+
+
+…+
=
可化为
+
+
+…+
=31,从而利用二项展开式可得.
| C | 0 n |
| ||
| 2 |
| ||
| 3 |
| ||
| n+1 |
| 31 |
| n+1 |
| C | 1 n+1 |
| C | 2 n+1 |
| C | 3 n+1 |
| C | n+1 n+1 |
解答:
解:∵
+
+
+…+
=
,
∴(n+1)(
+
+
+…+
)=31,
∴
+
+
+…+
=31,
+
+
+
+…+
=31+1,
故2n+1=32,
即n+1=5,则n=4.
| C | 0 n |
| ||
| 2 |
| ||
| 3 |
| ||
| n+1 |
| 31 |
| n+1 |
∴(n+1)(
| C | 0 n |
| ||
| 2 |
| ||
| 3 |
| ||
| n+1 |
∴
| C | 1 n+1 |
| C | 2 n+1 |
| C | 3 n+1 |
| C | n+1 n+1 |
| C | 0 n+1 |
| C | 1 n+1 |
| C | 2 n+1 |
| C | 3 n+1 |
| C | n+1 n+1 |
故2n+1=32,
即n+1=5,则n=4.
点评:本题考查了二项式定理的应用,属于基础题.
练习册系列答案
相关题目