题目内容

数列{an}满足a1=1,
1
2an+1
=
1
2an
+1(n∈N*).
(Ⅰ)求证{
1
an
}是等差数列;
(Ⅱ)若bn=an•an+1,求{bn}的前n项和Sn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(I)由
1
2an+1
=
1
2an
+1
可得:
1
an+1
=
1
an
+2
,利用等差数列的通项公式即可得出;
(II)bn=anan+1=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,利用“裂项求和”即可得出.
解答: 解:(I)由
1
2an+1
=
1
2an
+1
可得:
1
an+1
=
1
an
+2

∴数列{
1
an
}
是等差数列,首项
1
a1
=1
,公差d=2.
1
an
=
1
a1
+(n-1)d=2n-1

an=
1
2n-1

(II)∵bn=anan+1=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

Sn=a1a2+a2a3+…+anan+1
    =
1
2
(
1
1
-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)

=
1
2
(1-
1
2n+1
)
=
n
2n+1
点评:本题考查了等差数列的通项公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网