题目内容
数列{an}满足a1=1,
=
+1(n∈N*).
(Ⅰ)求证{
}是等差数列;
(Ⅱ)若bn=an•an+1,求{bn}的前n项和Sn.
| 1 |
| 2an+1 |
| 1 |
| 2an |
(Ⅰ)求证{
| 1 |
| an |
(Ⅱ)若bn=an•an+1,求{bn}的前n项和Sn.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(I)由
=
+1可得:
=
+2,利用等差数列的通项公式即可得出;
(II)bn=anan+1=
=
(
-
),利用“裂项求和”即可得出.
| 1 |
| 2an+1 |
| 1 |
| 2an |
| 1 |
| an+1 |
| 1 |
| an |
(II)bn=anan+1=
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
解答:
解:(I)由
=
+1可得:
=
+2,
∴数列{
}是等差数列,首项
=1,公差d=2.
∴
=
+(n-1)d=2n-1.
∴an=
.
(II)∵bn=anan+1=
=
(
-
),
∴
| 1 |
| 2an+1 |
| 1 |
| 2an |
| 1 |
| an+1 |
| 1 |
| an |
∴数列{
| 1 |
| an |
| 1 |
| a1 |
∴
| 1 |
| an |
| 1 |
| a1 |
∴an=
| 1 |
| 2n-1 |
(II)∵bn=anan+1=
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴
|
|
点评:本题考查了等差数列的通项公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目