题目内容

设实数x,y满足
x-y-2≤0
x+2y-4≥0
2y-3≤0
,则z=2x-y的最大值为
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,求目标函数z=2x-y的最大值.
解答: 解:由z=2x-y,得y=2x-z,作出不等式对应的可行域(阴影部分),
平移直线y=2x-z,由平移可知当直线y=2x-z,
经过点A时,直线y=2x-z的截距最小,此时z取得最大值,
2y-3=0
x-y-2=0
,解得
x=
7
2
y=
3
2
,即A(
7
2
3
2
).
将A的坐标代入z=2x-y,得z=2×
7
2
-
3
2
=
11
2

即目标函数z=2x-y的最大值为
11
2

故答案为:
11
2
点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网