题目内容

18.已知a,b∈R+,且$a+b+\frac{1}{a}+\frac{1}{b}=5$,则a+b的取值范围是(  )
A.[1,4]B.[2,+∞)C.(2,4)D.(4,+∞)

分析 a,b∈R+,由$(\frac{a+b}{2})^{2}$≥ab,可得$\frac{1}{ab}$≥$\frac{4}{(a+b)^{2}}$.又$a+b+\frac{1}{a}+\frac{1}{b}=5$,可得(a+b)$(1+\frac{1}{ab})$=5≥(a+b)$(1+\frac{4}{(a+b)^{2}})$,化简整理即可得出.

解答 解:∵a,b∈R+,∴$(\frac{a+b}{2})^{2}$≥ab,可得$\frac{1}{ab}$≥$\frac{4}{(a+b)^{2}}$.
∵$a+b+\frac{1}{a}+\frac{1}{b}=5$,
∴(a+b)$(1+\frac{1}{ab})$=5≥(a+b)$(1+\frac{4}{(a+b)^{2}})$,
化为:(a+b)2-5(a+b)+4≤0,
解得1≤a+b≤4,
则a+b的取值范围是[1,4].
故选:A.

点评 本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网