题目内容
18.已知a,b∈R+,且$a+b+\frac{1}{a}+\frac{1}{b}=5$,则a+b的取值范围是( )| A. | [1,4] | B. | [2,+∞) | C. | (2,4) | D. | (4,+∞) |
分析 a,b∈R+,由$(\frac{a+b}{2})^{2}$≥ab,可得$\frac{1}{ab}$≥$\frac{4}{(a+b)^{2}}$.又$a+b+\frac{1}{a}+\frac{1}{b}=5$,可得(a+b)$(1+\frac{1}{ab})$=5≥(a+b)$(1+\frac{4}{(a+b)^{2}})$,化简整理即可得出.
解答 解:∵a,b∈R+,∴$(\frac{a+b}{2})^{2}$≥ab,可得$\frac{1}{ab}$≥$\frac{4}{(a+b)^{2}}$.
∵$a+b+\frac{1}{a}+\frac{1}{b}=5$,
∴(a+b)$(1+\frac{1}{ab})$=5≥(a+b)$(1+\frac{4}{(a+b)^{2}})$,
化为:(a+b)2-5(a+b)+4≤0,
解得1≤a+b≤4,
则a+b的取值范围是[1,4].
故选:A.
点评 本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
6.变量x,y之间的一组相关数据如表所示:
若x,y之间的线性回归方程为$\widehaty$=$\widehatb$x+12.28,则$\widehatb$的值为( )
| x | 4 | 5 | 6 | 7 |
| y | 8.2 | 7.8 | 6.6 | 5.4 |
| A. | -0.92 | B. | -0.94 | C. | -0.96 | D. | -0.98 |
13.直三棱柱ABC-A1B1C1中,∠BAC=90°,M,N分别是A1B1,A1C1的中点,BA=CA=CC1,则BM与AN所成角的余弦值为( )
| A. | $\frac{4}{5}$ | B. | $\frac{1}{10}$ | C. | $\frac{{3\sqrt{10}}}{10}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
3.设函数f(x)=|2x-a|+|x+a|(a>0).
(1)当a=1时,求f(x)的最小值;
(2)若关于x的不等式$f(x)<\frac{5}{x}+a$在x∈[1,2]上有解,求实数a的取值范围.
(1)当a=1时,求f(x)的最小值;
(2)若关于x的不等式$f(x)<\frac{5}{x}+a$在x∈[1,2]上有解,求实数a的取值范围.
10.已知实数a>0,b>0,且满足2a+3b=6,则$\frac{2}{a}$+$\frac{3}{b}$的最小值是( )
| A. | $\frac{8}{3}$ | B. | $\frac{11}{3}$ | C. | $\frac{25}{6}$ | D. | 4 |
8.在等差数列{an}中,a1=10,公差为d,前 n项和为Sn,当且仅当n=5 时Sn取得最大值,则d 的取值范围为( )
| A. | $(-\frac{5}{2},-2)$ | B. | $(-∞,-\frac{5}{2}]$ | C. | (-∞,-2] | D. | $[-\frac{5}{2},-2]$ |