题目内容

13.直三棱柱ABC-A1B1C1中,∠BAC=90°,M,N分别是A1B1,A1C1的中点,BA=CA=CC1,则BM与AN所成角的余弦值为(  )
A.$\frac{4}{5}$B.$\frac{1}{10}$C.$\frac{{3\sqrt{10}}}{10}$D.$\frac{{\sqrt{2}}}{2}$

分析 已知ABC-A1B1C1是直三棱柱,取BC的中点0,连接A0,NM,BM,BM∥NO,BC∥NM,那么AN和NO所成角即为BM与AN所成角.求出边长,利用余弦定理求解角的大小.

解答 解:∵M,N分别是A1B1,A1C1的中点,
取BC的中点0,连接AO,NM,BM,
∴BM∥NO,BC∥NM且BC=2NM,
那么AN和NO所成角即为BM与AN所成角.
设BA=CA=CC1=2,∠BAC=90°,ABC-A1B1C1是直三棱柱,
∴AO=$\sqrt{2}$,AN=$\sqrt{5}$,BM=NO=$\sqrt{5}$,
∴cos∠ANO=$\frac{5+5-2}{2•\sqrt{5•\sqrt{5}}}$=$\frac{4}{5}$,
故选:A.

点评 本题考查异面直线所成角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网