题目内容
某人用7把钥匙去开门,其中只有一把钥匙能打开门上的锁,现逐个任取一把钥匙试开,且打不开的钥匙不放回,设X为找到此门钥匙的开门次数.
(1)列出关于随机变量X的分布列;
(2)求关于随机变量X的期望与方差.
(1)列出关于随机变量X的分布列;
(2)求关于随机变量X的期望与方差.
考点:离散型随机变量的期望与方差
专题:概率与统计
分析:(1)由已知得X=1,2,3,4,5,6,分别求出相应的概率,由此能求出X的分布列.
(2)由X的分布列能求出E(X)和D(X).
(2)由X的分布列能求出E(X)和D(X).
解答:
解:(1)由已知得X=1,2,3,4,5,6,
P(X=1)=
,
P(X=2)=
×
=
,
P(X=3)=
×
×
=
,
P(X=4)=
×
×
×
=
,
P(X=5)=
×
×
×
×
=
,
P(X=6)=1-
×5=
.
X的分布列为:
(2)E(X)=1×
+2×
+3×
+4×
+5×
+6×
=
,
D(X)=(1-
)2×
+(2-
)2×
+(3-
)2×
+(4-
)2×
+(5-
)2×
+(6-
)2×
+(7-
)2×
=
.
P(X=1)=
| 1 |
| 7 |
P(X=2)=
| 6 |
| 7 |
| 1 |
| 6 |
| 1 |
| 7 |
P(X=3)=
| 6 |
| 7 |
| 5 |
| 6 |
| 1 |
| 5 |
| 1 |
| 7 |
P(X=4)=
| 6 |
| 7 |
| 5 |
| 6 |
| 4 |
| 5 |
| 1 |
| 4 |
| 1 |
| 7 |
P(X=5)=
| 6 |
| 7 |
| 5 |
| 6 |
| 4 |
| 5 |
| 3 |
| 4 |
| 1 |
| 3 |
| 1 |
| 7 |
P(X=6)=1-
| 1 |
| 7 |
| 2 |
| 7 |
X的分布列为:
| X | 1 | 2 | 3 | 4 | 5 | 6 | ||||||||||||
| P |
|
|
|
|
|
|
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 7 |
| 2 |
| 7 |
| 27 |
| 7 |
D(X)=(1-
| 27 |
| 7 |
| 1 |
| 7 |
| 27 |
| 7 |
| 1 |
| 7 |
| 27 |
| 7 |
| 1 |
| 7 |
| 27 |
| 7 |
| 1 |
| 7 |
| 27 |
| 7 |
| 1 |
| 7 |
| 27 |
| 7 |
| 1 |
| 7 |
| 27 |
| 7 |
| 2 |
| 7 |
=
| 160 |
| 49 |
点评:本题考查离散型随机变量的分布列和数学期望、方差的求法,解题时要认真审题,是中档题.
练习册系列答案
相关题目