题目内容
已知a,b,c>0,a+b+c=1,求证:(a+
)(b+
)(c+
)≥
.
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| 1000 |
| 27 |
考点:基本不等式在最值问题中的应用
专题:证明题,不等式的解法及应用
分析:左边=abc+(
+
+
)+(
+
+
)+
≥abc+
+3
+
=(
+
)3,构造函数f(x)=(x+
)3(x∈(0,
]),证明函数在(0,
]上单调递减,即可证明结论.
| bc |
| a |
| ac |
| b |
| ab |
| c |
| c |
| ab |
| b |
| ac |
| a |
| bc |
| 1 |
| abc |
| 1 |
| abc |
| 3 | abc |
| 3 | |||
|
| 3 | abc |
| 1 | |||
|
| 1 |
| x |
| 1 |
| 3 |
| 1 |
| 3 |
解答:
证明:左边=abc+(
+
+
)+(
+
+
)+
≥abc+
+3
+
=(
+
)3
构造函数f(x)=(x+
)3(x∈(0,
]),
则f′(x)=3(x+
)2(1-
)<0,
∴函数在(0,
]上单调递减,
∴函数f(x)=(x+
)3(x∈(0,
])的最小值为
,
∴(
+
)3的最小值为
,
∴(a+
)(b+
)(c+
)≥
.
| bc |
| a |
| ac |
| b |
| ab |
| c |
| c |
| ab |
| b |
| ac |
| a |
| bc |
| 1 |
| abc |
| 1 |
| abc |
| 3 | abc |
| 3 | |||
|
| 3 | abc |
| 1 | |||
|
构造函数f(x)=(x+
| 1 |
| x |
| 1 |
| 3 |
则f′(x)=3(x+
| 1 |
| x |
| 1 |
| x2 |
∴函数在(0,
| 1 |
| 3 |
∴函数f(x)=(x+
| 1 |
| x |
| 1 |
| 3 |
| 1000 |
| 27 |
∴(
| 3 | abc |
| 1 | |||
|
| 1000 |
| 27 |
∴(a+
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| 1000 |
| 27 |
点评:本题考查基本不等式在最值问题中的应用,考查导数知识,考查学生分析解决问题的能力,有难度.
练习册系列答案
相关题目
乘积5×6×7×…×20等于( )
A、A
| ||
B、A
| ||
C、A
| ||
D、A
|