题目内容
已知数列{an}的前n项和为Sn,且满足Sn=2an-n,n∈N*
(1)求数列{an}的通项公式;
(2)求证:
<
+
+…+
<
.
(1)求数列{an}的通项公式;
(2)求证:
| n-1 |
| 2 |
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件推导出{an+1}是首项为2,公比为2的等比数列,由此能求出数列{an}的通项公式.
(2)由
=
=
<
,得到
+
+…+
<
.由
=
-
>
-
,得到
<
+
+…+
,由此能证明
<
+
+…+
<
.
(2)由
| an |
| an+1 |
| 2n-1 |
| 2n+1-1 |
| 2n-1 | ||
2(2n-
|
| 1 |
| 2 |
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
| an |
| an+1 |
| 1 |
| 2 |
| 1 |
| 2•2n+1-2 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n-1 |
| 2 |
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n-1 |
| 2 |
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
解答:
(本小题满分12分)
(1)解:∵Sn=2an-n,…①
∴a1=2a1-1,解得a1=1….(1分)
且Sn-1=2an-1-(n-1)…②
①-②得an=2an-1+1….(2分)
∴an+1=2(an-1+1),n≥2,
∴{an+1}是首项为2,公比为2的等比数列….(3分),
∴an=2n-1.….(4分)
(2)证明:∵
=
=
<
….(6分)
∴
+
+…+
<
.….(8分)
∵
=
=
=
(1-
)=
-
=
-
>
-
.….(10分)
∴
+
+…+
>
-(
+
+…+
)=
-
(1-
)>
,
∴
<
+
+…+
<
….(12分)
(1)解:∵Sn=2an-n,…①
∴a1=2a1-1,解得a1=1….(1分)
且Sn-1=2an-1-(n-1)…②
①-②得an=2an-1+1….(2分)
∴an+1=2(an-1+1),n≥2,
∴{an+1}是首项为2,公比为2的等比数列….(3分),
∴an=2n-1.….(4分)
(2)证明:∵
| an |
| an+1 |
| 2n-1 |
| 2n+1-1 |
| 2n-1 | ||
2(2n-
|
| 1 |
| 2 |
∴
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
∵
| an |
| an+1 |
| 2n-1 |
| 2n+1-1 |
| 2n-1 | ||
2(2n-
|
| 1 |
| 2 |
| 1 |
| 2n+1-1 |
| 1 |
| 2 |
| 1 |
| 2•2n+1-2 |
=
| 1 |
| 2 |
| 1 |
| 2n+1+2n+1-2 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
∴
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n+1 |
| n |
| 2 |
| 1 |
| 2 |
| 1 |
| 2n |
| n-1 |
| 2 |
∴
| n-1 |
| 2 |
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意放缩法和裂项法的合理运用.
练习册系列答案
相关题目