题目内容

如图,在三棱锥O-ABC中,G是△ABC的重心,若
OA
=a
a
OB
=
b
OC
=
c
,试用基底{
a
b
c
}表示向量
OG
 等于(  )
A、
1
3
a+
1
3
b+
1
3
c
B、
1
2
a+
1
2
b+
1
2
c
C、a+b+c
D、3a+3b+3c
考点:空间向量运算的坐标表示
专题:平面向量及应用
分析:由题意推出 向量
OG
,使得它用 基底{
a
b
c
}表示,从而求出系数,得到正确选项.
解答: 解:∵向量
OG
=
OA
+
AG
=
1
3
(
OA
+
AG
)
=
OA
+
1
3
(
OB
-
OA
+
OC
-
OA
)
=
1
3
OA
+
1
3
OB
+
1
3
OC
=
1
3
a
+
1
3
b
+
1
3
c

故选A.
点评:本题考查空间向量的加减法,以及向量用不共线的基底进行表示,注意三角形的重心的性质运用,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网