题目内容

条件求值:
(1)已知6sin2α+sinαcosα-2cos2α=0,α∈[
π
2
,π],求sin(2α
+
π
3
)
的值;
(2)已知tan(
π
4
+α)=
1
2

(i)求tanα的值
(ii)求
sin2α-cos2α
1+cos2α
的值.
考点:同角三角函数基本关系的运用,两角和与差的正弦函数,二倍角的正弦
专题:计算题,三角函数的求值
分析:(1)原等式可化简为
65
4
sin2α2+2sin2α-12=0,因为2α∈[π,2π]从而可解得sin2α=-
12
13
,故cos2α=±
5
13
,即可求出sin(2α+
π
3
)的值;
(2)(i)由已知可化简得
1+tanα
1-tanα
=
1
2
故有tanα=-
1
3
.(ii)原式可化简为
sin2α-cos2α
1+cos2α
=
2sinαcosα-cos2α
cos2α
=
2tanα-1
2
,代入(i)所求即可求值.
解答: 解:(1)6sin2α+sinαcosα-2cos2α=0
1
2
sin2α-4cos2α+2=0
65
4
sin2α2+2sin2α-12=0
因为α∈[
π
2
,π],故2α∈[π,2π]
所以可解得sin2α=-
12
13
或者
52
65
(舍去)
故cos2α=
1-sin2
=±
5
13

所以sin(2α+
π
3
)=
1
2
sin2α+
3
2
cos2α=
5
3
-12
26
-5
3
-12
26

(2)(i)tan(
π
4
+α)=
1
2
tan
π
4
+tanα
1-tan
π
4
tanα
=
1
2
1+tanα
1-tanα
=
1
2
⇒tanα=-
1
3

(ii)
sin2α-cos2α
1+cos2α
=
2sinαcosα-cos2α
cos2α
=
2tanα-1
2
=-
5
6
点评:本题主要考察了同角三角函数基本关系的运用,两角和与差的正弦函数公式,二倍角的正弦公式的应用,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网