题目内容

2.已知函数$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$的部分图象如图所示.
(Ⅰ)求f(x)的表达式;
(Ⅱ)把函数y=f(x)的图象向右平移$\frac{π}{4}$个单位后得到函数g(x)的图象,若函数$h(x)=ax+\frac{1}{2}g(2x)-g(x)$在(-∞,+∞)单调递增,求实数a的取值范围.

分析 (Ⅰ)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
(Ⅱ)利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,可得h(x)的解析式,再根据h′(x)≥0恒成立,求得a的范围.

解答 解:(Ⅰ)根据函数$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$的部分图象,
可得A=1,$\frac{T}{2}$=$\frac{5π}{4}$-$\frac{π}{4}$=$\frac{π}{ω}$,∴ω=1.
再根据五点法作图可得1•$\frac{π}{4}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{4}$,∴f(x)=sin(x+$\frac{π}{4}$).
(Ⅱ)把函数y=f(x)的图象向右平移$\frac{π}{4}$个单位后得到函数g(x)=sin(x-$\frac{π}{4}$+$\frac{π}{4}$)=sinx的图象
函数$h(x)=ax+\frac{1}{2}g(2x)-g(x)$=ax+$\frac{1}{2}$sin2x-sinx 在(-∞,+∞)单调递增,
∴h′(x)=a+cos2x-cosx=2cos2x-cosx-1+a=2${(cosx-\frac{1}{4})}^{2}$-$\frac{9}{8}$+a≥0恒成立,
∴-$\frac{9}{8}$+a≥0恒成立,即a≥$\frac{9}{8}$恒成立,故a的范围为[$\frac{9}{8}$,+∞).

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值.还考查了函数y=Asin(ωx+φ)的图象变换规律,利用导数研究函数的单调性,函数的恒成立问题,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网