题目内容
4.设函数f(x)=$\frac{ln({x}^{2}+3x-4)}{x-2}$,求f(x)的定义域.分析 直接由对数的真数大于0且分式的分母不等于0,求解即可得答案.
解答 解:由$\left\{\begin{array}{l}{{x}^{2}+3x-4>0}\\{x-2≠0}\end{array}\right.$,解得x<-4或x>1且x≠2,
∴函数f(x)=$\frac{ln({x}^{2}+3x-4)}{x-2}$的定义域是{x|x<-4或x>1且x≠2}.
点评 本题考查了函数的定义域及其求法,考查了对数函数的性质,是基础题.
练习册系列答案
相关题目
15.
为了解某单位员工的月工资水平,从该单位500位员工中随机抽取了50位进行调查,得到如下频数分布表和频率分布直方图:
(1)试由图估计该单位员工月平均工资;
(2)现用分层抽样的方法从月工资在[45,55)和[55,65)的两组所调查的男员工中随机选取5人,问各应抽取多少人?
(3)若从月工资在[25,35)和[45,55)两组所调查的女员工中随机选取2人,试求这2人月工资差不超过1000元的概率.
| 月工资 (单位:百元) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
| 男员工数 | 1 | 8 | 10 | 6 | 4 | 4 |
| 女员工数 | 4 | 2 | 5 | 4 | 1 | 1 |
(2)现用分层抽样的方法从月工资在[45,55)和[55,65)的两组所调查的男员工中随机选取5人,问各应抽取多少人?
(3)若从月工资在[25,35)和[45,55)两组所调查的女员工中随机选取2人,试求这2人月工资差不超过1000元的概率.
12.已知{an}是等比数列,那么下列结论错误的是( )
| A. | ${a_5}^2={a_3}•{a_7}$ | B. | ${a_5}^2={a_1}•{a_9}$ | ||
| C. | ${a_n}^2={a_{n-1}}•{a_{n+1}}({n∈{N^*}})$ | D. | ${a_n}^2={a_{n-k}}•{a_{n+k}}({k∈{N^*},n>k>0})$ |
19.国内某汽车品牌一个月内被消费者投诉的次数用X表示,据统计,随机变量X的概率分布如下:
(1)求a的值;
(2)假设一月份与二月份被消费者投诉的次数互不影响,求该汽车品牌在这两个月内共被消费者投诉2次的概率.
| X | 0 | 1 | 2 | 3 |
| P | 0.1 | 0.3 | 2a | a |
(2)假设一月份与二月份被消费者投诉的次数互不影响,求该汽车品牌在这两个月内共被消费者投诉2次的概率.
9.设函数f(x)(x∈R)为奇函数,f(1)=$\frac{1}{2}$,f(x+2)=f(x)+f(2),则f(-5)=( )
| A. | -$\frac{5}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{5}{2}$ | D. | 5 |