题目内容
17.已知函数f(x)是定义在R上的奇函数,且当x∈(-∞,0)时,f(x)-xf′(x)<0,若m=$\frac{f(\sqrt{3})}{\sqrt{3}}$,n=$\frac{f(ln\frac{1}{2})}{ln\frac{1}{2}}$,k=$\frac{f(lo{g}_{2}5)}{lo{g}_{2}5}$,则m,n,k的大小关系是n<m<k(用“<”连接).分析 构造函数g(x)=$\frac{f(x)}{x}$,结合函数的奇偶性,求出g(x)的单调性,从而判断结论.
解答 解:设g(x)=$\frac{f(x)}{x}$,则g′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,
∵当x∈(-∞,0)时,f(x)-xf′(x)<0,
∴当x∈(-∞,0)时,g′(x)>0,g(x)递增,
而函数f(x)是定义在R上的奇函数,
∴g(x)在R递增,
∵ln$\frac{1}{2}$<$\sqrt{3}$<log25,
∴g(ln$\frac{1}{2}$)<g($\sqrt{3}$)<g(log25),
∴n<m<k,
故答案为:n<m<k.
点评 本题考查了函数的单调性问题,考查导数的应用以及转化思想,是一道中档题.
练习册系列答案
相关题目
12.一动圆与定圆F:(x+2)2+y2=1相外切,且与直线l:x=1相切,则动圆圆心轨迹方程为( )
| A. | y2=4x | B. | y2=2x | C. | y2=-4x | D. | y2=-8x |
7.为了解某班学生喜爱篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知在全部50人中随机抽取1人抽到喜爱篮球的学生的概率为$\frac{3}{5}$.
(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱篮球与性别有关?说明你的理由;
(3)以该班学生的情况来估计全校女生喜爱篮球的情况,用频率代替概率.现从全校女生中抽取3人进一步调查,设抽到喜爱篮球的女生人数为ξ,求ξ的分布列与期望.
下面的临界值表供参考:
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
| 喜爱篮球 | 不喜爱篮球 | 合计 | |
| 男生 | 5 | ||
| 女生 | 10 | ||
| 合计 | 50 |
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱篮球与性别有关?说明你的理由;
(3)以该班学生的情况来估计全校女生喜爱篮球的情况,用频率代替概率.现从全校女生中抽取3人进一步调查,设抽到喜爱篮球的女生人数为ξ,求ξ的分布列与期望.
下面的临界值表供参考:
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |