题目内容
已知直线l经过两条直线2x+y-8=0和x-2y+1=0的交点,且垂直于直线6x-8y+3=0,求直线l的方程.
考点:两条直线的交点坐标
专题:直线与圆
分析:联立方程,求出点P的坐标,利用所求直线l与6x-8y+3=0垂直,可设直线l的方程为8x+6y+C=0,代入P的坐标,可求直线l的方程;
解答:
解:由
,解得
,
∴点P的坐标是(3,2),
∵所求直线l与8x+6y+C=0垂直,
∴可设直线l的方程为8x+6y+C=0.
把点P的坐标代入得8×3+6×2+C=0,即C=-36.
∴所求直线l的方程为8x+6y-36=0,
即4x+3y-18=0.
|
|
∴点P的坐标是(3,2),
∵所求直线l与8x+6y+C=0垂直,
∴可设直线l的方程为8x+6y+C=0.
把点P的坐标代入得8×3+6×2+C=0,即C=-36.
∴所求直线l的方程为8x+6y-36=0,
即4x+3y-18=0.
点评:本题考查直线与直线的位置关系,考查直线方程,考查直线系,考查学生的计算能力,正确设方程是关键.
练习册系列答案
相关题目
设Sn为等差数列{an}的前n项和,(n+1)Sn<nSn+1(n∈N*),若
<-1,则( )
| a8 |
| a7 |
| A、Sn的最大值为S8 |
| B、Sn的最小值为S8 |
| C、Sn的最大值为S7 |
| D、Sn的最小值为S7 |