题目内容
若定义在R上奇函数f(x)满足f(x)=f(x+5),且f(1)=1,则f(4)=( )
| A、-1 | B、1 | C、-2 | D、2 |
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:由f(x+3)=-f(x)求出函数的周期,再将f(4)转化为f(-1),再根据条件和奇函数的关系式求解.
解答:
解:由f(x)=f(x+5),得函数的周期为5,
∴f(4)=f(-1),
又∵f(x)是定义在R上的奇函数,
得f(-1)=-f(1)=-1,
故选:A
∴f(4)=f(-1),
又∵f(x)是定义在R上的奇函数,
得f(-1)=-f(1)=-1,
故选:A
点评:本题考查了函数周期性和奇偶性的应用,即根据周期函数的性质和奇偶性对应的关系式,将自变量进行转化,转化到已知范围内求解,考查了转化思想.
练习册系列答案
相关题目
不等式x2≤9的解集( )
| A、{x|x≤3} |
| B、{x|x≤±3} |
| C、{x|x≤-3或x≥3} |
| D、{x|-3≤x≤3} |
已知某等比数列共有10项,其奇数项之和为15,偶数项之和为30,则其公比为( )
| A、5 | B、4 | C、3 | D、2 |
已知函数f(x)的导数为f′(x),且满足f(x)=3x2+2xf′(2),则f′(5)=( )
| A、6 | B、7 | C、8 | D、9 |
已知等比数列{an}中,其前n项和Sn=3n+k,则k的值为( )
| A、-1 | B、1 | C、0 | D、3 |
球O为边长为2的正方体ABCD-A1B1C1D1的内切球,P为球O的球面上动点,M为B1C1中点,DP⊥BM,则点P的轨迹周长为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
等差数列{an},前n项和为Sn,a1>0,a2012,a2013是方程x2-(λ2+λ+1)x-(λ2+1)=0的两根,则满足Sn>0的n的最大正整数为( )
| A、4023 | B、4024 |
| C、4025 | D、4026 |
在△ABC中,sinC=2sinAcosB,则△ABC的形状为( )
| A、直角三角形 |
| B、等腰三角形 |
| C、等腰直角三角形 |
| D、不能确定 |