题目内容
若集合{a,b,c,d}={1,2,3,4},且下列四个关系:
①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是 .
①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是
考点:集合的相等
专题:计算题,集合
分析:利用集合的相等关系,结合①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,即可得出结论.
解答:
解:由题意,a=2时,b=1,c=4,d=3;b=3,c=1,d=4;
a=3时,b=1,c=4,d=2;b=1,c=2,d=4;b=2,c=1,d=4;
a=4时,b=1,c=3,d=2;
∴符合条件的有序数组(a,b,c,d)的个数是6个.
a=3时,b=1,c=4,d=2;b=1,c=2,d=4;b=2,c=1,d=4;
a=4时,b=1,c=3,d=2;
∴符合条件的有序数组(a,b,c,d)的个数是6个.
点评:本题考查集合的相等关系,考查分类讨论的数学思想,正确分类是关键.
练习册系列答案
相关题目
设函数f(x)=
sin
,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是( )
| 3 |
| πx |
| m |
| A、(-∞,-6)∪(6,+∞) |
| B、(-∞,-4)∪(4,+∞) |
| C、(-∞,-2)∪(2,+∞) |
| D、(-∞,-1)∪(1,+∞) |
对任意等比数列{an},下列说法一定正确的是( )
| A、a1,a3,a9成等比数列 |
| B、a2,a3,a6成等比数列 |
| C、a2,a4,a8成等比数列 |
| D、a3,a6,a9成等比数列 |