题目内容
若数列{an}是等差数列,则“a1<a2”是“数列{an}为递增数列”( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、不充分也不必要条件 |
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据等差数列的性质,分别证明充分性和必要性,从而得到答案.
解答:
解:若“a1<a2”,则公差d>0,数列{an}为递增数列,是充分条件,
若数列{an}为递增数列,则公差d>0,推出“a1<a2”,是必要条件,
故选:C.
若数列{an}为递增数列,则公差d>0,推出“a1<a2”,是必要条件,
故选:C.
点评:本题考查了充分必要条件,考查了等差数列的性质,是一道基础题.
练习册系列答案
相关题目
为了得到函数y=sin
x的图象,只需把函数y=sinx图象上所有的点的( )
| 1 |
| 3 |
| A、横坐标伸长到原来的3倍,纵坐标不变 | ||
B、横坐标缩小到原来的
| ||
| C、纵坐标伸长到原来的3倍,横坐标不变 | ||
D、纵坐标伸长到原来的
|
已知Sn是等差数列{an}n∈N*的前n项和,且S6>S7>S5,给出下列五个命题:
①d<0;②S11>0;③S12<0;④数列{Sn}中最大项为S11;⑤|a6|>|a7|,
其中正确命题的个数( )
①d<0;②S11>0;③S12<0;④数列{Sn}中最大项为S11;⑤|a6|>|a7|,
其中正确命题的个数( )
| A、5 | B、4 | C、3 | D、1 |
某学校在“11•9”举行老师、学生消防知识比赛,报名的学生和教师的人数之比为6:1,学校决定按分层抽样的方法从报名的师生中抽取35人组队进行比赛,已知教师甲被抽到的概率为
,则报名的学生人数是 .
| 1 |
| 10 |
函数f(x)=ax-2+loga(x-1)(a>0且a≠1),在x∈[2,3]上的最大值与最小值之和为a,则a等于( )
| A、4 | ||
B、
| ||
| C、2 | ||
D、
|
直线xtan
+y+2=0的倾斜角α是( )
| π |
| 3 |
A、
| ||
B、
| ||
C、
| ||
D、-
|
已知集合M={x∈R|(x+1)(x-2)>0}和N={x∈R|x2+x<0},则集合M是集合N的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |