题目内容
已知函数f(x)=x|x-2m|,设-2<m<0,记f1(x)=f(x),fk+1(x)=f(fk(x))(k∈N*),则函数y=f2014(x)的零点个数为( )
| A、2 | B、3 |
| C、2014 | D、2015 |
考点:函数零点的判定定理
专题:计算题,函数的性质及应用
分析:先求f(x)=x|x-2m|=0的解,利用数学归纳法证明.
解答:
解:∵f(x)=x|x-2m|=0的解只有两个 x=0 或x=2m,
∴对于fk+1(x)=0,fk(x)=0 或者 fk(x)=2m,
假设数列{an}对应的就是fn(x)=0的解,
设fk(x)=2m的解个数为r,
那么就有 an+1=an+r,
对应fk(x)=2m的交点所在的函数图象部分恰好是单调的,解的个数是1个.
∴an+1=an+1是一个等差数列.
∴fn(x)=0的解个数就是 n+1个;
故函数y=f2014(x)的零点个数为2014+1=2015个,
故选:D.
∴对于fk+1(x)=0,fk(x)=0 或者 fk(x)=2m,
假设数列{an}对应的就是fn(x)=0的解,
设fk(x)=2m的解个数为r,
那么就有 an+1=an+r,
对应fk(x)=2m的交点所在的函数图象部分恰好是单调的,解的个数是1个.
∴an+1=an+1是一个等差数列.
∴fn(x)=0的解个数就是 n+1个;
故函数y=f2014(x)的零点个数为2014+1=2015个,
故选:D.
点评:本题考查了用数学归纳法证明的方法,函数的零点的个数的判断要说明单调性,属于中档题.
练习册系列答案
相关题目
已知函数f(x)=
,若f(2-a2)<f(a),则实数a的取值范围是( )
|
| A、(-∞,-1)∪(2,+∞) |
| B、(-1,2) |
| C、(-2,1) |
| D、(-∞,-2)∪(1,+∞) |