题目内容

13.下表是检测某种浓度的农药随时间x(秒)渗入某种水果表皮深度y(微米)的一组结果.
时间x(秒)510152030
深度y(微米)610101316
(1)在规定的坐标系中,画出 x,y 的散点图;
(2)求y与x之间的回归方程,并预测40秒时的深度(回归方程精确到小数点后两位;预测结果精确到整数).
回归方程:$\widehat{y}$=bx+a,其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.

分析 (1)在规定的坐标系中,画出 x,y 的散点图即可;
(2)计算$\overline{x}$、$\overline{y}$,求出回归系数$\stackrel{∧}{b}$、a,
写出回归方程,计算x=40时$\widehat{y}$的值即可.

解答 解:(1)在规定的坐标系中,画出 x,y 的散点图如图所示;
(2)计算$\overline{x}$=$\frac{1}{5}$×(5+10+15+20+30)=16,
$\overline{y}$=$\frac{1}{5}$×(6+10+10+13+16)=11;
$\sum_{i=1}^{5}$xiyi=5×6+10×10+15×10+20×13+30×16=1020,
$\sum_{i=1}^{5}$${{x}_{i}}^{2}$=52+102+152+202+302=1650,
∴回归系数为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{1020-5×15×11}{1650-5{×16}^{2}}$≈0.53,
a=$\overline{y}$-b$\overline{x}$=11-0.53×16=2.52;
∴回归方程为:$\widehat{y}$=0.53x+2.52;
当x=40时,$\widehat{y}$=0.53×40+2.52=23.72,
即预测40秒时的深度23.72微米.

点评 本题考查了散点图与线性回归方程的应用问题,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网