题目内容
8.已知角θ的顶点与原点重合,始边与x轴的非负半轴重合,终边在直线y=3x上,则tan2θ等于-$\frac{3}{4}$.分析 由条件利用任意角的三角函数的定义求得tanθ的值,再利用二倍角的正切公式求得tan2θ的值.
解答 解:由于直线y=2x经过第一、第三象限,故角θ的终边在第一、或第三象限,
①若角θ的终边在第一象限,在角θ的终边y=3x上任意取一点(1,3),则由任意角的三角函数的定义,可得tanθ=3,
故tan2θ=$\frac{2tanθ}{1-ta{n}^{2}θ}$=$\frac{6}{1-9}$=-$\frac{3}{4}$
②角θ的终边在第三象限,若角θ的终边在第三象限,在角θ的终边y=3x上任意取一点(-1,-3),则由任意角的三角函数的定义,可得tanθ=3,
故tan2θ=$\frac{2tanθ}{1-ta{n}^{2}θ}$=$\frac{6}{1-9}$=-$\frac{3}{4}$.
故答案为:-$\frac{3}{4}$
点评 本题主要考查任意角的三角函数的定义,体现了分类讨论的数学思想,属于基础题.
练习册系列答案
相关题目
16.若平面区域$\left\{\begin{array}{l}x+y-3≥0\\ 2x-y-3≤0\\ x-2y+3≥0\end{array}\right.$夹在两条斜率为$\frac{2}{3}$的平行直线之间,则这两平行直线间的距离的最小值为( )
| A. | $\sqrt{2}$ | B. | $\frac{{2\sqrt{13}}}{13}$ | C. | $\frac{{5\sqrt{13}}}{13}$ | D. | $5\sqrt{13}$ |
13.
下表是检测某种浓度的农药随时间x(秒)渗入某种水果表皮深度y(微米)的一组结果.
(1)在规定的坐标系中,画出 x,y 的散点图;
(2)求y与x之间的回归方程,并预测40秒时的深度(回归方程精确到小数点后两位;预测结果精确到整数).
回归方程:$\widehat{y}$=bx+a,其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.
| 时间x(秒) | 5 | 10 | 15 | 20 | 30 |
| 深度y(微米) | 6 | 10 | 10 | 13 | 16 |
(2)求y与x之间的回归方程,并预测40秒时的深度(回归方程精确到小数点后两位;预测结果精确到整数).
回归方程:$\widehat{y}$=bx+a,其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.
17.下列参数方程能与方程y2=x表示同一曲线的是( )
| A. | $\left\{{\begin{array}{l}{x=t}\\{y={t^2}}\end{array}}\right.$(t为参数) | |
| B. | $\left\{{\begin{array}{l}{x={{sin}^2}t}\\{y=sint}\end{array}}\right.$(t为参数) | |
| C. | $\left\{\begin{array}{l}x=\frac{1-cos2t}{1+cos2t}\\ y=tant\end{array}\right.$(t为参数) | |
| D. | $\left\{\begin{array}{l}{x=t}\\{y=\sqrt{|t|}}\end{array}\right.$(t为参数) |