题目内容
抛物线y2=4x上一点M与该抛物线的焦点F的距离|MF|=4,则点M的横坐标x=( )
| A、2 | B、3 | C、4 | D、5 |
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,已知|MF|=4,则M到准线的距离也为4,即点M的横坐标x+
=4,将p的值代入,进而求出x.
| p |
| 2 |
解答:
解:∵抛物线y2=4x=2px,
∴p=2,
由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,
∴|MF|=4,即有x+
=4,
∴x=3,
故选B.
∴p=2,
由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,
∴|MF|=4,即有x+
| p |
| 2 |
∴x=3,
故选B.
点评:活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.
练习册系列答案
相关题目
为了得到函数y=cos(2x-
)的图象,可以将函数y=-sin2x的图象( )
| π |
| 3 |
A、向左平移
| ||
B、向右平移
| ||
C、向左平移
| ||
D、向右平移
|