题目内容

设A,B为圆x2+y2=1上两点,O为坐标原点,M为x轴正半轴上一点(A,O,B不共线)
(1)求证:
OA
+
OB
OA
-
OB
垂直
(2)当∠MOA=
π
4
,∠MOB=θ,θ∈(-
π
4
π
4
),且
OA
OB
=
3
5
时,求sinθ的值.
考点:平面向量的综合题
专题:综合题,平面向量及应用
分析:(1)欲证:
OA
+
OB
OA
-
OB
垂直,只需证明(
OA
+
OB
)•(
OA
-
OB
)=0即可;
(2)根据
OA
OB
=
3
5
可求出cos(θ-
π
4
)=
3
5
,然后根据sinθ=sin[(θ-
π
4
)+
π
4
],利用正弦的两角和公式进行求解.
解答: (1)证明:由题意知|
OA
|=|
OB
|=1,
∴(
OA
+
OB
)•(
OA
-
OB
)=
OA
2-
OB
2
=|
OA
|2-|
OB
|2=1-1=0,
OA
+
OB
OA
-
OB
垂直.
(2)解:
OA
=(cos
π
4
,sin
π
4
),
OB
=(cosθ,sinθ),
OA
OB
=cos
π
4
cosθ+sin
π
4
sinθ=cos(θ-
π
4
),
OA
OB
=
3
5
,∴cos(θ-
π
4
)=
3
5

∵-
π
4
<θ<
π
4

∴-
π
2
<θ-
π
4
<0,
∴sin(θ-
π
4
)=-
4
5

∴sinθ=sin[(θ-
π
4
)+
π
4
]
=sin(θ-
π
4
)cos
π
4
+cos(θ-
π
4
)sin
π
4

=-
4
5
×
2
2
+
3
5
×
2
2
=-
2
10
点评:本题主要考查了向量在几何中的应用,以及同角三角函数和两角和的正弦公式,同时考查了计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网