题目内容
抛物线y2=4x上一点P到直线x=-1的距离与到点Q(2,2)的距离之差的最大值为( )
| A、3 | ||
B、
| ||
| C、5 | ||
D、
|
考点:抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:当P,Q,F共线时,P到直线x=-1的距离与到点Q(2,2)的距离之差取最大值,由此能求出结果.
解答:
解:
如图,由抛物线的定义知:
抛物线y2=4x上一点P到直线x=-1的距离|PM|=|PF|,
∴当P,Q,F共线时,
P到直线x=-1的距离与到点Q(2,2)的距离之差取最大值,
∵F(1,0),Q(2,2),
∴[|PM|-|PQ|]max
=[|PF|-|PQ|]max
=|QF|
=
=
,
故选:D.
抛物线y2=4x上一点P到直线x=-1的距离|PM|=|PF|,
∴当P,Q,F共线时,
P到直线x=-1的距离与到点Q(2,2)的距离之差取最大值,
∵F(1,0),Q(2,2),
∴[|PM|-|PQ|]max
=[|PF|-|PQ|]max
=|QF|
=
| (2-1)2+22 |
| 5 |
故选:D.
点评:本题考查两线段之差的最大值的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.
练习册系列答案
相关题目
若向量
=(1,1-x),
=(1,1+x),则函数f(x)=
是( )
| a |
| b |
| ||||||
| 4-|x-4| |
| A、奇函数 | B、偶函数 |
| C、非奇非偶函数 | D、减函数 |
在△ABC中,三边a,b,c所对的角分别为A,B,C,若a2-b2=
bc,sinC=2
sinB,则角A=( )
| 3 |
| 3 |
| A、30° | B、45° |
| C、150° | D、135° |
从2名男生和2名女生中,任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
设函数f(x)的导函数为f′(x),若对任意x∈R都有f′(x)>f(x)成立,则( )
| A、f(ln2014)<2014f(0) |
| B、f(ln2014)=2014f(0) |
| C、f(ln2014)>2014f(0) |
| D、f(ln2014)与2014f(0)的大小关系不确定 |