题目内容

设函数f(x)的导函数为f′(x),若对任意x∈R都有f′(x)>f(x)成立,则(  )
A、f(ln2014)<2014f(0)
B、f(ln2014)=2014f(0)
C、f(ln2014)>2014f(0)
D、f(ln2014)与2014f(0)的大小关系不确定
考点:导数的运算
专题:函数的性质及应用
分析:构造函数g(x)=
f(x)
ex
,利用导数可判断g(x)的单调性,由单调性可得g(ln2014)与g(0)的大小关系,整理即可得到答案.
解答: 令g(x)=
f(x)
ex
,则g′(x)=
f′(x)•ex-f(x)•e x
e2x
=
f′(x)-f(x)
ex

因为对任意x∈R都有f′(x)>f(x),
所以g′(x)>0,即g(x)在R上单调递增,
又ln2014>0,所以g(ln2014)>g(0),即
f(ln2014)
eln2014
f(0)
e0

所以 f(ln2014)>2014f(0),
故选:C.
点评:本题考查导数的运算及利用导数研究函数的单调性,属中档题,解决本题的关键是根据选项及已知条件合理构造函数,利用导数判断函数的单调性.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网