题目内容

14.已知函数f(x)=$\left\{\begin{array}{l}{\frac{\sqrt{3-mx}}{m}(0<x≤1)}\\{\frac{1}{m}x-1(x>1)}\end{array}\right.$在(0,+∞)上单调递减函数,则实数m的取值范围m≤-1.

分析 若函数f(x)=$\left\{\begin{array}{l}{\frac{\sqrt{3-mx}}{m}(0<x≤1)}\\{\frac{1}{m}x-1(x>1)}\end{array}\right.$在(0,+∞)上单调递减函数,则$\left\{\begin{array}{l}\frac{\sqrt{3-m}}{m}≥\frac{1}{m}-1\\ \frac{1}{m}<0\end{array}\right.$,解得实数m的取值范围

解答 解:若函数f(x)=$\left\{\begin{array}{l}{\frac{\sqrt{3-mx}}{m}(0<x≤1)}\\{\frac{1}{m}x-1(x>1)}\end{array}\right.$在(0,+∞)上单调递减函数,
则$\left\{\begin{array}{l}\frac{\sqrt{3-m}}{m}≥\frac{1}{m}-1\\ \frac{1}{m}<0\end{array}\right.$,
解得:m≤-1,
故答案为:m≤-1.

点评 本题考查的知识点是分段函数的应用,正确理解分段函数单调性的意义,是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网