题目内容
16.已知x,y满足不等式组$\left\{\begin{array}{l}x-4y≤-3\\ 3x+5y≤25\\ x≥1\end{array}\right.$,则函数z=2x+y取得最大值与最小值之和是( )| A. | 3 | B. | 9 | C. | 12 | D. | 15 |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合求出最值即可.
解答
解:由约束条件作出可行域如图,
由图可知,使目标函数z=2x+y取得最大值时过点B,
联立 $\left\{\begin{array}{l}{x-4y=-3}\\{3x+5y=25}\end{array}\right.$,解得 $\left\{\begin{array}{l}{x=5}\\{y=2}\end{array}\right.$,
故z的最大值是:z=12,
取到最小值时过点A,
联立$\left\{\begin{array}{l}{x=1}\\{x-4y=-3}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,
故z的最小值是:z=3,
∴最大值与最小值之和是15,
故选:D.
点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
7.己知函数f(x)=x2+bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若函数g(x)=f(sinx),则函数g(x)的最大值是( )
| A. | -$\frac{1}{2}$ | B. | 0 | C. | 2 | D. | 不存在 |
11.已知集合M={x|x2-3x-4≥0},N={x|-3≤x<3},则M∩N=( )
| A. | [-3,-1] | B. | [-1,3) | C. | (-∞,-4] | D. | (-∞,-4]∪[1,-3) |
8.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点A作斜率为l的直线,该直线与双曲线的两条渐近线的交点分别为B,C,若$\overrightarrow{AB}$=$\overrightarrow{BC}$,且以焦点为圆心,与渐近线相切的圆的面积为π,则此双曲线的离心率为( )
| A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | $\sqrt{10}$ | D. | 2$\sqrt{2}$ |
6.设锐角α终边上一点P的坐标是(3cosθ,sinθ),则函数y=θ-α(0<θ<$\frac{π}{2}$)的最大值是( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |