题目内容
命题p:在区间[1,+∞)上至少有一个x0,使得x03-x0-1>0,则¬p为( )
| A、?x∈[1,+∞),x3-x-1≤0 |
| B、?x∈(-∞,1],x3-x-1≤0 |
| C、?x0∈[1,+∞),x03-x0-1≤0 |
| D、?x0∈(-∞,1],x03-x0-1≤0 |
考点:命题的否定
专题:简易逻辑
分析:根据特称命题的否定是全称命题,即可得到结论.
解答:
解:特称命题的否定是全称命题,即命题的否定是:
?x∈[1,+∞),x3-x-1≤0,
故选:A
?x∈[1,+∞),x3-x-1≤0,
故选:A
点评:本题主要考查含有量词的命题的否定,根据特称命题的否定是全称命题,全称命题的否定是特称命题是解决本题的关键.
练习册系列答案
相关题目
若变量x,y满足约束条件
,则z=2x+y的最大值为( )
|
| A、1 | B、-1 | C、-2 | D、-4 |