题目内容
“直线y=kx+b过点(1,1)”是“k=2且b=-1”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
考点:必要条件、充分条件与充要条件的判断
专题:常规题型
分析:直线y=kx+b过点(1,1),所以得到1=k+b,下面只要验证k+b=1能否得出k=2且b=-1,k=2且b=-1能否得出k+b=1就可以了.
解答:
解:由直线y=kx+b过点(1,1)得:1=k+b,即:k+b=1,∵k+b=1得不出k=2且b=-1,
∴直线y=kx+b过点(1,1)不是k=2且b=-1的充分条件;
而k=2且b=-1能得出k+b=1,∴直线y=kx+b过点(1,1)是k=2且b=-1的必要条件.
故选:B.
∴直线y=kx+b过点(1,1)不是k=2且b=-1的充分条件;
而k=2且b=-1能得出k+b=1,∴直线y=kx+b过点(1,1)是k=2且b=-1的必要条件.
故选:B.
点评:能理解充分条件与必要条件的概念,本题便不难做.
练习册系列答案
相关题目
已知首项为正数的等差数列{an}的前n项和为Sn,若a1006,a1007是方程x2-2012x-2011=0的两根,则使Sn>0成立的正整数n的最大值是( )
| A、1006 | B、1007 |
| C、2011 | D、2012 |
下列说法正确的是( )
| A、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行 |
| B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 |
| C、若两条直线和同一个平面所成的角相等,则这两条直线平行 |
| D、若两个平面都垂直于第三个平面,则这两个平面平行 |
在△ABC中,BC=2,B=
,当△ABC的面积等于
时,AB=( )
| π |
| 3 |
| ||
| 2 |
A、
| ||||
B、
| ||||
| C、1 | ||||
D、
|
一几何体的三视图如图,它的体积为( )

| A、2 | ||
B、
| ||
C、
| ||
D、
|
记X(x y 1),T=
,X′=
,则方程XTX′=0表示的曲线只可能是( )
|
|
| A、圆 | B、椭圆 | C、双曲线 | D、抛物线 |