题目内容

如图,设椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率e=
3
2
,顶点M、N的距离为
5
,O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点O作两条互相垂直的射线,与椭圆C分别交于A,B两点.
(ⅰ)试判断点O到直线AB的距离是否为定值.若是请求出这个定值,若不是请说明理由;
(ⅱ)求|AB|的最小值.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)利用e=
3
2
c
a
=
3
2
,由顶点M、N的距离为
5
,得a2+b2=5,由a2=b2+c2,即可求椭圆C的方程;
(Ⅱ)(ⅰ)分类讨论,直线AB的斜率存在时,设直线AB的方程为y=kx+m,代入椭圆方程,消去y,利用OA⊥OB,可得x1x2+y1y2=0,整理得5m2=4(1+k2),即可得出结论;
(ⅱ)在Rt△AOB中,d|AB|=|OA||OB|,利用基本不等式,即可求|AB|的最小值.
解答: 解:(Ⅰ)由e=
3
2
c
a
=
3
2

由顶点M、N的距离为
5
,得a2+b2=5,
又由a2=b2+c2,解得a=2,b=1,
∴椭圆C的方程为
x2
4
+y2=1

(Ⅱ)(ⅰ)点O到直线AB的距离为定值
设A(x1,y1),B(x2,y2),
①当直线AB的斜率不存在时,则△AOB为等腰直角三角形,不妨设直线OA:y=x
将y=x代入
x2
4
+y2=1
,解得x=±
2
5
5

∴点O到直线AB的距离为d=
2
5
5

②当直线AB的斜率存在时,设直线AB的方程为y=kx+m,
代入椭圆方程,消去y得(1+4k2)x2+8kmx+4m2-4=0.
∴x1+x2=-
8km
1+4k2
,x1x2=
4m2-4
1+4k2

∵OA⊥OB,∴x1x2+y1y2=0.
∴x1x2+(kx1+m)(kx2+m)=0,
即(1+k2)x1x2+km(x1+x2)+m2=0
∴(1+k2
4m2-4
1+4k2
+km•(-
8km
1+4k2
)+m2=0,
整理得5m2=4(1+k2),
∴点O到直线AB的距离d=
|m|
1+k2
=
2
5
5

综上可知点O到直线AB的距离为定值
2
5
5

(ⅱ)在Rt△AOB中,d|AB|=|OA||OB|.
∵2|OA||OB|≤|OA|2+|OB|2=|AB|2
∴|AB|2≥2d|AB|,
∴|AB≥2d=
4
5
5
,当|OA|=|OB|时取等号,即|AB|的最小值是
4
5
5
点评:本题考查直线与圆锥曲线的位置关系、椭圆方程的求解,考查学生分析解决问题的能力,弦长公式、韦达定理是解决该类问题的常用知识,要熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网