题目内容

13.已知F1(-1,0),F2(1,0)是椭圆的两个焦点,过F1的直线l交椭圆于M,N两点,若△MF2N的周长为8,则椭圆方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

分析 由题意可知△MF2N的周长为4a,从而可求a的值,进一步可求b的值,则椭圆方程可求.

解答 解:由题意,4a=8,∴a=2,
∵F1(-1,0)、F2(1,0)是椭圆的两焦点,
∴b2=3,
∴椭圆方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
故答案为:为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

点评 本题主要考查椭圆的定义及标准方程的求解,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网