题目内容

数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*
(Ⅰ)证明:数列{
an
n
}是等差数列;
(Ⅱ)设bn=3n
an
,求数列{bn}的前n项和Sn
考点:数列的求和,等比关系的确定
专题:
分析:(Ⅰ)将nan+1=(n+1)an+n(n+1)的两边同除以n(n+1)得
an+1
n+1
=
an
n
+1
,由等差数列的定义得证.
(Ⅱ)由(Ⅰ)求出bn=3n
an
=n•3n,利用错位相减求出数列{bn}的前n项和Sn
解答: 证明(Ⅰ)∵nan+1=(n+1)an+n(n+1),
an+1
n+1
=
an
n
+1

an+1
n+1
-
an
n
=1

∴数列{
an
n
}是以1为首项,以1为公差的等差数列;
(Ⅱ)由(Ⅰ)知,
an
n
=1+(n-1)•1=n

an=n2
bn=3n
an
=n•3n
Sn=1×3+2×32+3×33+…+(n-1)•3n-1+n•3n
3Sn=1×32+2×33+3×34+…+(n-1)•3n+n•3n+1
①-②得-2Sn=3+32+33+…+3n-n•3n+1
=
3-3n+1
1-3
-n•3n+1

=
1-2n
2
3n+1-
3
2

Sn=
2n-1
4
3n+1+
3
4
点评:本题考查利用等差数列的定义证明数列是等差数列;考查数列求和的方法:错位相减法.求和的关键是求出通项选方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网