题目内容

如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为2
17
,点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.
(Ⅰ)证明:GH∥EF;
(Ⅱ)若EB=2,求四边形GEFH的面积.
考点:直线与平面垂直的性质,棱柱、棱锥、棱台的体积
专题:综合题,空间位置关系与距离
分析:(Ⅰ)证明GH∥EF,只需证明EF∥平面PBC,只需证明BC∥EF,利用BC∥平面GEFH即可;
(Ⅱ)求出四边形GEFH的上底、下底及高,即可求出面积.
解答: (Ⅰ)证明:∵BC∥平面GEFH,平面GEFH∩平面ABCD=EF,BC?平面ABCD,
∴BC∥EF,
∵EF?平面PBC,BC?平面PBC,
∴EF∥平面PBC,
∵平面EFGH∩平面PBC=GH,
∴EF∥GH;
(Ⅱ)解:连接AC,BD交于点O,BD交EF于点K,连接OP,GK.
∵PA=PC,O为AC中点,
∴PO⊥AC,
同理可得PO⊥BD,
又∵BD∩AC=O,AC?底面ABCD,BD?底面ABCD,
∴PO⊥底面ABCD,
又∵平面GEFH⊥平面ABCD,PO?平面GEFH,
∴PO∥平面GEFH,
∵平面PBD∩平面GEFH=GK,
∴PO∥GK,且GK⊥底面ABCD
∴GK是梯形GEFH的高
∵AB=8,EB=2,
EB
AB
=
KB
DB
=
1
4

∴KB=
1
4
DB=
1
2
OB
,即K为OB中点,
又∵PO∥GK,
∴GK=
1
2
PO,即G为PB中点,且GH=
1
2
BC=4

由已知可得OB=4
2
,PO=
PB2-OB2
=
68-32
=6,
∴GK=3,
故四边形GEFH的面积S=
1
2
(GH+EF)×GK
=
1
2
(4+8)×3
=18.
点评:本题考查线面平行的判定与性质,考查梯形面积的计算,正确运用线面平行的判定与性质是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网