题目内容
4.| A. | 0<f′(2)<f′(3)<f(3)-f(2) | B. | 0<f′(3)<f(3)-f(2)<f′(2) | C. | 0<f′(3)<f′(2)<f(3)-f(2) | D. | 0<f(3)-f(2)<f′(2)<f′(3) |
分析 由题意,作出f′(3)、f(3)-f(2)、f′(2)所表示的几何意义,从而求解.
解答 解:如下图:![]()
f′(3)、f(3)-f(2)、f′(2)分别表示了直线n,m,l的斜率,
故0<f′(3)<f(3)-f(2)<f′(2),
故选:B.
点评 本题考查了学生的作图能力及对导数的几何意义的理解,属于中档题.
练习册系列答案
相关题目
15.设函数f(x)是定义在(0,+∞)上的可导函数,其导函数为f′(x),f(x)>0恒成立,且有2f(x)>xf′(x)+x,则当x>0时,下列不等关系一定正确的是( )
| A. | 4xf(x2)≤x4f(2x) | B. | e2xf($\frac{1}{x}$)≥$\frac{1}{{x}^{2}}$f(ex) | ||
| C. | xf($\sqrt{x}$)≤f(x) | D. | 4xf(x+1)≤(x2+2x+1)f(2$\sqrt{x}$) |
9.已知P,A,B是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$上不同的三点,且A,B关于原点对称,若直线PA,PB的斜率乘积${k_{PA}}•{k_{PB}}=\frac{3}{4}$,则该双曲线的离心率是( )
| A. | 2 | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{7}}}{2}$ | D. | $2\sqrt{2}$ |
16.设数列{an}是等比数列,且an>0,Sn为其前n项和.已知a2a4=16,$\frac{{{a_4}+{a_5}+{a_8}}}{{{a_1}+{a_2}+{a_5}}}=8$,则S5等于( )
| A. | 40 | B. | 20 | C. | 31 | D. | 43 |
13.在所有的两位数中,十位数字大于个位数字的两位数共有( )
| A. | 50 | B. | 45 | C. | 36 | D. | 35 |