题目内容
2.在区间[0,2]上随机取两个数x,y,则xy∈[0,2]的概率是( )| A. | $\frac{1-ln2}{2}$ | B. | $\frac{3-2ln2}{4}$ | C. | $\frac{1+ln2}{2}$ | D. | $\frac{1+2ln2}{2}$ |
分析 由题意,本题是几何概型,由于是两个变量,利用比例对应区域的面积比求概率.
解答
解:在区间[0,2]上随机取两个数x,y,对应区域面积为4,而满足xy∈[0,2]的区域如图阴影部分,面积为2×1$+{∫}_{1}^{2}\frac{2}{x}dx$=2+2ln2,由几何概型的概率公式得到概率是$\frac{2+2ln2}{4}=\frac{1+ln2}{2}$;
故选:C.
点评 本题考查了几何概型的概率求法;关键是明确事件对应的区域面积,利用面积比求概率.
练习册系列答案
相关题目
13.已知函数f(x)=$\left\{\begin{array}{l}{g(x),x<0}\\{a-lo{g}_{2}(x+2),x≥0}\end{array}\right.$是奇函数,则f(x)>-1的解集为( )
| A. | (-2,0]∪(2,+∞) | B. | (-2,+∞) | C. | (-∞,-2)∪(0,2) | D. | (-∞,2) |
10.下列命题中,正确的是( )
①?x∈R,2x>3x;②“x≠3”是“|x|≠3”成立的充分条件;③空间中若直线l若平行于平面α,则α内所有直线均与l是异面直线;④空间中有三个角是直角的四边形不一定是平面图形.
①?x∈R,2x>3x;②“x≠3”是“|x|≠3”成立的充分条件;③空间中若直线l若平行于平面α,则α内所有直线均与l是异面直线;④空间中有三个角是直角的四边形不一定是平面图形.
| A. | ①③ | B. | ①④ | C. | ②④ | D. | ②③ |
17.设复数z=$\frac{1+2i}{(1-i)^{2}}$,则z的虚部是( )
| A. | $\frac{1}{2}$i | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{1}{2}$i |
7.若f(x)是定义在R上的函数,且满足:①f(x)是偶函数;②f(x+2)是偶函数;③当0<x≤2时,f(x)=log2017x,当x=0时,f(0)=0,则方程f(x)=-2017在区间(1,10)内的多有实数根之和为( )
| A. | 0 | B. | 10 | C. | 12 | D. | 24 |
14.设a∈R,若复数z=$\frac{a-i}{3+i}$(i是虚数单位)的实部为$\frac{1}{2}$,则复数z的虚部为( )
| A. | $\frac{13}{30}$ | B. | -$\frac{13}{30}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
11.
如图,已知A、B分别是函数f(x)=$\sqrt{3}$cos(ωx-$\frac{π}{2}$)(ω>0)在y轴右侧图象上的第一个最高点和第一个最低点,且∠AOB=$\frac{π}{2}$,则为了得到函数y=$\sqrt{3}$sin($\frac{π}{2}$x+$\frac{π}{3}$)的图象,只需把函数y=f(x)的图象( )
| A. | 向左平行移动$\frac{π}{3}$个单位长度 | B. | 向左平行移动$\frac{1}{3}$个单位长度 | ||
| C. | 向左平行移动$\frac{2}{3}$个单位长度 | D. | 向左平行移动$\frac{2π}{3}$个单位长度 |