ÌâÄ¿ÄÚÈÝ
11£®| A£® | Ïò×óƽÐÐÒÆ¶¯$\frac{¦Ð}{3}$¸öµ¥Î»³¤¶È | B£® | Ïò×óƽÐÐÒÆ¶¯$\frac{1}{3}$¸öµ¥Î»³¤¶È | ||
| C£® | Ïò×óƽÐÐÒÆ¶¯$\frac{2}{3}$¸öµ¥Î»³¤¶È | D£® | Ïò×óƽÐÐÒÆ¶¯$\frac{2¦Ð}{3}$¸öµ¥Î»³¤¶È |
·ÖÎö ÏÈÇóµÃA¡¢BµÄ×ø±ê£¬ÔÙÀûÓÃÁ½¸öÏòÁ¿´¹Ö±µÄÐÔÖÊ£¬Á½¸öÏòÁ¿µÄÊýÁ¿»ý¹«Ê½ÇóµÃTµÄÖµ£¬¿ÉµÃ¦ØµÄÖµ£¬ÔÙÀûÓú¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬µÄ³ö½áÂÛ£®
½â´ð ½â£ºº¯Êýf£¨x£©=$\sqrt{3}$cos£¨¦Øx-$\frac{¦Ð}{2}$£©=$\sqrt{3}$sin¦Øx£¬É躯Êýf£¨x£©µÄÖÜÆÚΪT£¬ÔòµãA£¨$\frac{T}{4}$£¬$\sqrt{3}$£©¡¢B£¨$\frac{3T}{4}$£¬-$\sqrt{3}$£©£¬
¸ù¾Ý¡ÏAOB=$\frac{¦Ð}{2}$£¬¿ÉµÃ$\overrightarrow{OA}•\overrightarrow{OB}$=$\frac{{3T}^{2}}{16}$-3=0£¬¡àT=4=$\frac{2¦Ð}{¦Ø}$£¬¡à¦Ø=$\frac{¦Ð}{2}$£¬f£¨x£©=$\sqrt{3}$sin$\frac{¦Ð}{2}$x£®
ÓÉÓÚº¯Êýy=$\sqrt{3}$sin£¨$\frac{¦Ð}{2}$x+$\frac{¦Ð}{3}$£©=$\sqrt{3}$sin$\frac{¦Ð}{2}$£¨x+$\frac{2}{3}$£©£¬
¹ÊÖ»Ðè°Ñº¯Êýy=f£¨x£©µÄͼÏóÏò×óƽÐÐÒÆ¶¯$\frac{2}{3}$¸öµ¥Î»³¤¶È£¬
¹ÊÑ¡£ºC£®
µãÆÀ ±¾ÌâÖÐÖ÷Òª¿¼²éÓÕµ¼¹«Ê½£¬ÕýÏÒº¯ÊýµÄÖÜÆÚÐÔ£¬Á½¸öÏòÁ¿´¹Ö±µÄÐÔÖÊ£¬Á½¸öÏòÁ¿µÄÊýÁ¿»ý¹«Ê½£¬º¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬ÊôÓÚ»ù´¡Ì⣮
| A£® | -$\frac{2}{3}$ | B£® | -$\frac{1}{2}$ | C£® | -$\frac{\sqrt{2}}{4}$ | D£® | $\frac{1}{4}$ |
| A£® | $\frac{1-ln2}{2}$ | B£® | $\frac{3-2ln2}{4}$ | C£® | $\frac{1+ln2}{2}$ | D£® | $\frac{1+2ln2}{2}$ |
| A£® | $\sqrt{10}$ | B£® | ¡À$\sqrt{10}$ | C£® | $\sqrt{5}$ | D£® | ¡À$\sqrt{5}$ |
| A£® | $\sqrt{337}$ | B£® | 27 | C£® | $\sqrt{689}$ | D£® | 29 |