题目内容

10.已知函数f(x)=|x-1|+|x+a|
(Ⅰ)当a=3时,解关于x的不等式|x-1|+|x+a|>6
(Ⅱ)若函数g(x)=f(x)-|3+a|存在零点,求实数a的取值范围.

分析 (Ⅰ)当a=-1时,不等式|x-1|+|x+3|>6等价变形,可得结论;
(Ⅱ)利用|x-1|+|x+a|≥|a+1|,即可求实数a的取值范围.

解答 解:(Ⅰ)当a=3时,不等式|x-1|+|x+3|>6可化为
$\left\{\begin{array}{l}{x≤-3}\\{1-x-x-3>6}\end{array}\right.$或$\left\{\begin{array}{l}{-3<x<1}\\{1-x+x+3>6}\end{array}\right.$或$\left\{\begin{array}{l}{x>1}\\{x-1+x+3>6}\end{array}\right.$,…(3分)
解得x<-4或x>2,
∴不等式f(x)>5的解集为{x|x<-4或x>2}.…(5分)
(Ⅱ)若函数g(x)=f(x)-|3+a|存在零点,则
∵|x-1|+|x+a|≥|a+1|,
∴|3+a|≥|a+1|,解得a≥-2.

点评 本题考查绝对值不等式,考查学生的计算能力,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网