题目内容

11.已知x+y+z=1.
证明:(1)x2+y2+z2≥xy+yz+zx,
(2)x2+y2+z2≥$\frac{1}{3}$.

分析 (1)利用已知条件,平方,通过重要不等式,转化证明即可.
(2)利用平方化简,结合(1)即可推出结果.

解答 (本题满分12分)
证明:(1)∵x+y+z=1,∴(x+y+z)2=x2+y2+z2+2(xy+yz+zx)=1
又∵x2+y2≥2xy,y2+z2≥2yz,z2+x2≥2xz,
∴2(x2+y2+z2)≥2(xy+yz+zx),
即x2+y2+z2≥xy+yz+zx,
(2)∵x+y+z=1,∴(x+y+z)2=x2+y2+z2+2(xy+yz+zx)=1
∴1=x2+y2+z2+2(xy+yz+zx)≤3(x2+y2+z2).
∴x2+y2+z2≥$\frac{1}{3}$.

点评 本题考查不等式的证明,综合法的应用,考查逻辑推理能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网