题目内容
4.已知曲线C1:y2=tx(y>0,t>0)在点M($\frac{4}{t}$,2)处的切线与曲线C2:y=ex+1-1也相切,则tln$\frac{4{e}^{2}}{t}$的值为( )| A. | 4e2 | B. | 8e | C. | 2 | D. | 8 |
分析 利用曲线C1:y2=tx(y>0,t>0)在点M($\frac{4}{t}$,2)处的切线与曲线C2:y=ex+1-1也相切,求出t的值,则tln$\frac{4{e}^{2}}{t}$的值可求.
解答 解:曲线C1:y2=tx(y>0,t>0),y′=$\frac{1}{2\sqrt{tx}}$•t,
x=$\frac{4}{t}$,y′=$\frac{t}{4}$,∴切线方程为y-2=$\frac{t}{4}$(x-$\frac{4}{t}$)
设切点为(m,n),则曲线C2:y=ex+1-1,y′=ex+1,em+1=$\frac{t}{4}$,∴m=ln$\frac{t}{4}$-1,n=$\frac{t}{4}$-1,
代入$\frac{t}{4}$-1-2=$\frac{t}{4}$(ln$\frac{t}{4}$-1-$\frac{4}{t}$),解得t=4,
∴tln$\frac{4{e}^{2}}{t}$=4lne2=8.
故选D.
点评 本题考查导数的几何意义的应用,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
练习册系列答案
相关题目
8.角α的终边经过点(2,-1),则sinα+cosα的值为( )
| A. | -$\frac{{3\sqrt{5}}}{5}$ | B. | $\frac{{3\sqrt{5}}}{5}$ | C. | -$\frac{{\sqrt{5}}}{5}$ | D. | $\frac{{\sqrt{5}}}{5}$ |
9.函数f(x)满足:对?x∈R+都有f′(x)=$\frac{3}{x}$f(x),且f(22016)≠0,则$\frac{f({2}^{2017})}{f({2}^{2016})}$的值为( )
| A. | 0.125 | B. | 0.8 | C. | 1 | D. | 8 |
13.已知函数f(x)=$\left\{{\begin{array}{l}{{2^x},x≤0}\\{sinx,x>0}\end{array}}$,则$f(f(\frac{7π}{6}))$=( )
| A. | $\sqrt{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
14.f(x)是偶函数,且在(-∞,0)上是增函数,则下列关系成立的是( )
| A. | f(-2)<f(1)<f(3) | B. | f(1)<f(-2)<f(3) | C. | f(3)<f(-2)<f(1) | D. | f(-2)<f(3)<f(1) |