题目内容

4.已知曲线C1:y2=tx(y>0,t>0)在点M($\frac{4}{t}$,2)处的切线与曲线C2:y=ex+1-1也相切,则tln$\frac{4{e}^{2}}{t}$的值为(  )
A.4e2B.8eC.2D.8

分析 利用曲线C1:y2=tx(y>0,t>0)在点M($\frac{4}{t}$,2)处的切线与曲线C2:y=ex+1-1也相切,求出t的值,则tln$\frac{4{e}^{2}}{t}$的值可求.

解答 解:曲线C1:y2=tx(y>0,t>0),y′=$\frac{1}{2\sqrt{tx}}$•t,
x=$\frac{4}{t}$,y′=$\frac{t}{4}$,∴切线方程为y-2=$\frac{t}{4}$(x-$\frac{4}{t}$)
设切点为(m,n),则曲线C2:y=ex+1-1,y′=ex+1,em+1=$\frac{t}{4}$,∴m=ln$\frac{t}{4}$-1,n=$\frac{t}{4}$-1,
代入$\frac{t}{4}$-1-2=$\frac{t}{4}$(ln$\frac{t}{4}$-1-$\frac{4}{t}$),解得t=4,
∴tln$\frac{4{e}^{2}}{t}$=4lne2=8.
故选D.

点评 本题考查导数的几何意义的应用,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网