题目内容

13.已知函数f(x)=$\left\{{\begin{array}{l}{{2^x},x≤0}\\{sinx,x>0}\end{array}}$,则$f(f(\frac{7π}{6}))$=(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

分析 先求出f($\frac{7π}{6}$)=sin$\frac{7π}{6}$=-sin$\frac{π}{6}$=-$\frac{1}{2}$,从而$f(f(\frac{7π}{6}))$=f(-$\frac{1}{2}$),由此能求出结果.

解答 解:∵函数f(x)=$\left\{{\begin{array}{l}{{2^x},x≤0}\\{sinx,x>0}\end{array}}$,
∴f($\frac{7π}{6}$)=sin$\frac{7π}{6}$=-sin$\frac{π}{6}$=-$\frac{1}{2}$,
$f(f(\frac{7π}{6}))$=f(-$\frac{1}{2}$)=${2}^{-\frac{1}{2}}$=$\frac{\sqrt{2}}{2}$.
故选:B.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网